CERIAS Tech Report 2000-23

Packet Tracker Final Report

Florian Buchholz, Thomas E. Daniels,
Benjamin Kuperman,Clay Shields
Center for Education and Research in
Information Assurance and Security
Department of Computer Science, Purdue University

Purdue University
West Lafayette, IN 47907-1398

Hostl ———= Network T ———=|Host 2

header info TTeeell [T header info

source addr= Host 1 source addr= Host 1
dest addr = Host 2 dest addr = Host 2
Data Data

Figure 1: Simple Network Model

1 Introduction

When creating the suite of protocols that are used in the Internet today, the
designers were more concerned with ensuring reliability and survivability
than they were with providing accounting or security services [11]. This
lead to a very simple network model. First, a packet-switched network was
chosen to allow robustness and ease of routing around failures in the network.
Second, all the network would provide was a simple packet-delivery service.
This model was the basis for the Internet Protocol (IP), the fundamental
protocol used in the Internet [27]. While in IP there are a few options
for specifying a particular type of service requested from the network, and
options to record the route the packet traveled or to mandate a particular
route for the packet, all other services — including reliable transmission,
congestion control and authentication of the source of a transmitted packet
— have to take place at the endpoints of the communication [27]. Under this
simple model, a host connected to the network gives a packet to the network,
and the network attempts to deliver it to the given destination address. This
is shown in Figure 1, in which Host 1 sends a packet to Host 2. As shown,
the contents of the packet are some header information (including the packet
and header lengths and checksum, the protocol being used and the type of
service desired), the source of the packet and the destination for which it is
intended, and data (which includes information not only for the application
but also as necessary for multiplexing and reliability).

1.1 The Address Spoofing Problem

While this simple model formed the basis for the wide variety of successful
services extant today, it is not without its flaws. Based on the informa-
tion readily available, a host cannot be sure that a received packet has the
correct source address. While in some cases the source correctness may be
inferred from other data in the packet, particularly if some sort of strong
authentication is used, it is typically very easy for some malicious sender to
spoof the address of a packet that it sends. Figure 2 shows a malicious host
sending a packet to Host 2 while pretending to be Host 1.

Hostl —— Network %» Host 2

header info

source addr= Host 1
PRt . dest addr = Host 2
Tl o Data

header info

Malicious
Host source addr= Host 1

dest addr = Host 2
Data

Figure 2: Address Spoofing

This capability has been used in a number of attacks, either to gain
access to a host by exploiting a trust relationship it has with another host
based solely on IP addresses [19, 2, 13], or to perpetuate a denial-of-service
attack [6, 5, 7, 3]. In response, some individual domains have voluntarily
added filters to their outgoing router that drop outgoing packets with exter-
nal addresses. This prevents users inside the domain from spoofing packets
by limiting the range of addresses that can be forged to those within that
domain but does not prevent the use of address spoofing within the domain
to hide an insider attack or to exploit internal trust relations.

It is also possible to prevent some of these attacks at the receiving end
by requiring use of strong authentication, but that is not yet consistently
feasible in practice, as it may be difficult to require such authentication
for small packets as TCP SYNs. It can also be computationally expensive
in terms of key management and key exchange. More importantly, while
authentication will cause rejection of spoofed packets, it does not allow for
discovery of the attacker, who is difficult to track and locate as the packet
source address does not reflect any information as to his location. Finally, an
attacker who has compromised a host may have access to the key information
needed to defeat the authentication mechanism thereby leaving nothing more
with which to trace the attack than in the unauthenticated case.

Currently, the main method used to locate such an attacker is to attempt
to trace back the stream of forged packets while the attack is active [18, 31,
8, 23]. By following the stream of packets from router to router within
the network it is possible to trace back and locate the particular source
that might be conducting an attack. This is shown in Figure 3, where the
internals of the network are revealed to be a number of routers, which are
specialized hardware devices that do packet routing and forwarding, and
the traceback occurs through the routers in the order they are numbered.
This method is very limited, however, as it is necessary to have access to
all routers along the path from victim to attacker, and this is often not the
case. The attacker’s packets may be traversing a number of domains under

Host 1 — {2 =~ Host 2
O Router
Path of Spoofed
Messages

Malicious
Host

Figure 3: The Route of Traceback

different administrative control, in which case it is necessary to contact
other network administrators, who have other demands on their time and
may not be able to respond to an attack against a target for which they
are not responsible. Additionally, this method is limited to tracing active
attacks and thus must be done while the attack is occurring, or in the case
of Intrusion Detection and Isolation Protocol (IDIP) [23], shortly thereafter.
In all of these systems except for IDIP, no state is maintained in the network
and therefore it is impossible to trace an attack after it has completed. In
IDIP, a small amount of state is kept at special routers installed throughout
the network that allows tracing of a packet immediately after its reception.
It is unclear what level of state may be maintained without overburdening
network components and how long this window of traceability is.

1.2 Traceback of Streams

An attacker may also take other actions to hide his location. A common
(and unfortunately, often easy) way to do this is to compromise some remote
host and use it to launch attacks. This makes it difficult to locate a partic-
ular attacker, because even if tracing back a stream of spoofed messages is
successful, it results only in the location of the compromised host. The trace
back then might have to be repeated if the audit data in the compromised
host has been corrupted, or is insufficient to determine where the attacker
came from. An attacker might use a series of compromised hosts, making
the process of locating him very difficult, because hosts in multiple domains
may be involved in different political regions around the world, or because
the attacker may not be actively connected to the compromised host that is
launching the attack, having set up the attack program to run after he has
disconnected. Figure 4 illustrates how an attacker can use this method to
hide their location. Notice that the data stream from the attacker passes in
and out of the network at several different places.

Attacker —— Host 2

T . N RSN
Compromised / »;_){”””\T’ TN \
Host / e \\
/ .

- - == TCP Connection r/ .’

Spoofed
IP Packets

Figure 4: Using Compromised Hosts to Conceal Origin

1.3 The Problem

In each of these cases an attacker is aided by the fact that the network and
its hosts do not deliver or maintain any information about the traffic carried.
Packets are not delivered with any information about their originator, and
this results in an attacker being able assume the identity of others, in terms
of sending packets, with relative impunity. Data streams are traceable only
while they are active, and once ended are impossible to follow, making it
possible for an attacker to escape without his location being detected.

1.4 Past Work

There is previous and current work that attempts to characterize how a
network device that sits at the edge of a particular network (either at the
sub-net the host lies on, or at the boundary between autonomous domains)
can attempt to match an incoming and outgoing stream so as to detect
when an attacker is using a compromised host for forwarding. This serves
two purposes. First, it allows for detection of compromised hosts. Second,
it allows for a “shortcut” in any attempt to trace back a stream to an
attacker. While most of these previous efforts have been attempts to detect
an attackers activity in real time [18, 31, 8], some work has been done on
recording and providing a fingerprint of a data stream, so that streams
monitored in different locations around the network can be compared after
the fact [24, 25].

Other work presents a host-based approach to tracing an attacker who
is logged on through a number of hosts[14]. During the process of logging
into a remote host, the originating host presents a trace for the user show-
ing the hosts he has traversed and user names used on those hosts. The
destination host then takes steps to verify that the user is actually logged
into those hosts. If the verification step succeeds, the login is allowed. In
either case, the trace is logged for later use by an administrator. In tightly
controlled environments this may prove to be a useful approach, but it may
be subverted using covert channels and other tricks.

Previously researched solutions are mostly unproven in real networks and
have many problems that limit their utility. For instance, it is unclear how
commonly false matches will occur in the fingerprinting techniques.[25, 24,
18]. Additionally, these techniques are susceptible to link-based encryption
and evasion techniques similar to those described by others. [20] None of the
techniques have addressed the problem of interdomain tracing nor incorpo-
rated measures to help assure the privacy of users. Also, none of the prior
work has looked at limiting the ability to trace connections to authorized
individuals. Finally, most of these traceback techniques only work for active
attacks, but often attacks are not detected until it is too late to launch a
trace during the attack.

Tracing packets and streams in a variety of network environments is an
important component of the fledgling field of network forensics. The tech-
niques for traceback systems proposed so far are only applicable to closed,
tightly controlled environments. For traceback systems in open networks
like the Internet, we must address the problems of privacy, trace integrity,
and passive tracing. Furthermore, we must evaluate existing fingerprinting
techniques for use in large, highly-connected networks and develop better
techniques if necessary.

1.5 Anonymous Protocols

There have been a number of methods that have been used to maintain
anonymity in the Internet, some for malicious purposes and some with the
purpose of maintaining privacy. All the currently proposed methods make
use of either address spoofing or use other hosts as proxies to hide the
originator of a message, and thus simply take advantage of existing problems
to hide the identity of the originator of a message. The use of address
spoofing is more strongly associated with malicious attacks [19, 2, 13, 6, 5,
7, 3], that do not require two-way communication, as replies to the message
are not routed back to the attacker but instead to whatever spoofed address
is included.

Initiators using protocols designed for anonymous two-way communi-
cation are not able to use address spoofing effectively, and therefore relay
their streams through other hosts in order to hide their identity. In the
simplest of these schemes, a single proxy is used to “bounce” the stream to
the destination. A malicious way to accomplish this is to use the forward-
ing mechanisms offered by some ftp servers [4]. A similar service is actually
provided commercially by companies who serve as a relay for customers who
want to anonymize their web browsing [30, 1]. These services use a single
proxy to hide the IP address of the web browser from the web server, but
that IP address is know to the proxy.

Because in some cases a single proxy may not be trustworthy, some other
protocols make use of multiple proxies so that the original sender is anony-

mous with respect to the group of proxies. In these schemes, a trade-off
between bandwidth consumption and anonymity is achieved by forwarding
the streams of other in exchange for others forwarding your traffic [21, 22].
By using multiple proxies, no one proxy will know the originator of a stream
as even though they can see the host that sent them the stream, the proxy
will not know if the sender was the originator or some other forwarding
proxy. In this case, it is possible to determine the originator of a particular
stream if all traffic to or from a suspected originator is monitored. Outgoing
streams that do not have a corresponding input stream must be originating
at the monitored location. To make the matching of incoming and outgo-
ing streams more difficult, these protocols use encryption and re-encrypt the
stream between each link. This makes matching of the stream contents diffi-
cult, particularly if a particular host or proxy is forwarding multiple streams.
Against these encrypted streams it is possible to use timing attacks that look
at arrival and idle times to matching streams but no formal work describes
this area. To preserve anonymity in the face of a timing attack, someone
who wishes to preserve anonymity can use a more powerful proxy called a
miz [10]. A mix takes in a number of connections and re-orders them before
sending them back out. This adds latency to the connection, but makes it
difficult to apply timing attacks to any particular mix. Fortunately from the
point of view of being able to trace connections back, mixes are not com-
monly used for real time communications but are instead more commonly
used for things such as electronic mail. Application to streams of data is
certainly possible, but it is not being done at this time.

Existing protocols for anonymity take advantage of the ability to spoof IP
addresses and the fact that it is difficult to trace a stream through multiple
hosts. As techniques are developed to locate the originator of a single packet
and to trace streams through the network, these protocols will provide a
lesser degree of anonymity. It is easy to envision that as attackers and those
concerned about network privacy lose their anonymity, however, that other
forms of anonymous communication may be either discovered or developed,
then deployed.

2 Environments

When examining possible systems of network traceback, it is important for
us to define the environment in which our solutions will be applied. We
suggest that there are two defining characteristics for solution environments:
who controls the hosts and who controls the network.

Centralized host control implies that a single administrative authority
is able to define and control all of the participating hosts on a network.
This authority can determine the hardware, operating system, software
installed, network services offered, and has the ability to customize or

Network Control
Local Diverse
Centralized Host control | Closed Model | Intranet Model
Diverse Host control Academic Internet

Table 1: A matrix of various computing environments encountered in a
networked system of computers.

modify the network applications in any way they desire, provided the
network will still carry their data.

Diverse host control implies that there is no central authority that can
control and regulate the hosts connected to the network. No guar-
antees can be made about the specific hardware, software, operating
system, or network services that hosts offer. Subsets of hosts might
be under a single control, but not necessarily the entire set.

Local network control implies that all of the network infrastructure is
under a single administrative domain. This administration can dic-
tate the hardware, topology, and routing used in the network. This
administration also has the authority to change network protocols,
modify or examine any data flowing over the network, and regulate
who or what is connected to the network.

Diverse network control implies that no central authority exists that
controls the network infrastructure. Standard network protocols are
required, or else data may or may not be routed. It is not possible to
make any guarantees about who sees any data, or who the sender of
any data is.

As seen in table 1, these four characteristics serve as the primary dis-
tinguisher for our four network models. The labels we have selected are
arbitrary, and intended to convey the general concept of each environment.

Closed Model - This is an environment where the network hardware and
all machines connected to it are under a single administrative control.
This environment allows arbitrary changes to be made to network
protocols and end machines. All of the packets viewed on the network
should have been generated by a machine under the administrative
control, and the packets never cross “untrusted” hardware.

Intranet Model - This environment is a collection of LANs that are in-
terconnected by some form of “secure” connections (e.g. VPN tunnels,
leased lines, etc.). Packets travel between clusters of machines across
a shared network. A single entity can be controlling these clusters

of machines, but it is necessary that the data be able to be carried
over a public network if necessary, so the freedom to modify network
topology, hardware, or protocols is lacking.

Academic Model - This environment is the situation on many University
campuses. A single network connects the various machines on the
campus, however, the machines are not centrally administrated. Any
changes in the network protocols requires consensus building amongst
the diverse groups. It is assumed that machines can be connected
to the network at any time, and that they may or may not be well
behaved.

Internet Model - There is a collection of LANs, WANs, and single hosts
all sharing a network structure that does not have any central control-
ling authority.

The primary factors described above are not the only factors that de-
fine the environment in which traceback solutions are implemented. The
following factors describe some of the various issues that also need to be
considered, but are not fundamental to the enviroments in our discussions.

Resources of an entity are composed of three distinct subcomponents:

1. Financial resources describe the ability of an organization to
purchase or otherwise expend money. This resource is used to
augment and offset any deficiency that might exist in the other
types of resources. Depending on the organization, the use of
financial resources might be tightly controlled and/or under spe-
cific restrictions. For instance, the DoD can spend its allocated
resources with relative freedom, but a small business might have
to justify every single dollar of expenditure and use of this re-
source would be difficult.

2. Technical resources are sources of technical knowledge and ex-
pertise. If an organization does not naturally have a large tech-
nical reserve to draw on, they can expend financial resources to
improve it by either hiring new staff or consultants. A University
might have restrictions on the expenditure of financial resources,
but they have a vast technical resource in their professors and
graduate students.

3. Manpower resources expresses the ability for work to be done.
A small company has limited manpower resources, while a uni-
versity has a large set of manpower (students!). Again, any lack
in this area can be offset by the expenditure of financial resources.

4. Infrastructure resources are the various computer and net-
working hardware available to an organization. This can be ex-

pressed in terms of bandwith, CPU power available, and hard-
ware availability. An infrastructure rich environment such as the
labs at Sun Microsystems or Cisco can build custom hardware to
meet task needs, while an infrastructure poor organization, like a
public school, would be hard pressed to meet current user needs.

Expectations of Privacy are defined in respect to some outside party.
Users in an network environment might have no expectation of pri-
vacy as in a corporate setting where the users sign away their privacy.
Another example is a classified computing environment where a user
expects privacy from his peers so as to maintain confidentiality but
certainly not from management for reasons of oversight. Users may
also expect privacy from host and/or network administrators in some
environments.

Societal Cost is a term that we use to describe the various incentives that
exist for needing a network connection to be traced. In an intelligence
agency, being able to trace an attacker’s connection might be an issue
of life and death of operatives. In a university setting, the issue might
be to track an attacker that is using university resources to launch
attacks. A provider of high bandwidth communication channels might
not have any desire to trace connections, but simply need to bill the
proper customers based on traffic.

The model environments described above serve as a baseline for evalu-
ating and designing traceback systems. The defining characteristics of the
environments limit the possible solutions for a given environment, and the
secondary factors help us to further describe the approaches based on their
social, financial, and practical impacts.

3 Conclusions

There are two main problems that make tracing network traffic to its source
difficult: address spoofing and the redirection of traffic through multiple pos-
sibly compromised hosts. Each of the existing network forensics or traceback
techniques addresses a small part of the overall problem space, but they fail
to address many issues needed in a useful traceback system such as privacy
and cross-domain traceability. Anonymity protocols take advantage of the
very same problems that make it difficult to trace network traffic, and if
used in the same environment as a traceback system, they imply a tradeoff
must be made between traceability and anonymity. In order to evaluate
possible solutions we will consider solutions in terms of appropriateness for
a model environment and also using various secondary factors. Finally, to
achieve our goal of improving the state of the art in traceback systems, we

must address the issues left unsolved by existing techniques and develop
solutions with them in mind that are compatible with the various model
environments.

4 Implementation and Evaluation

In the following Sections, we will introduce and analyze two of the proposed
network tracking systems that seem promising: “Caller Identification Sys-
tem in the Internet Environment” by Jung et. al. [15] and “Distributed
Tracing of Intruders” by Stuart Staniford-Chen [26]. We will also discuss
experiences with the implementation of the two systems, and give a detailed
evaluation of both.

The two approaches were chosen because they each represent one type
of monitoring class that is feasible when dealing with traceback. Jung et.
al. propose a host-based solution, whereas Staniford-Chen has developed
a network-based approach. Each approach makes sense and both call for
thorough investigation. There are pros and cons with both of them as will
become clear in the following sections.

The two selected approaches fit the model environments as well. Jung
et. al.’s work would be most useful in environments where the hosts are
tightly controlled such as the Closed Model discussed in Section 2. Also, in
the Intranet Model, Jung’s work might be appropriate but might be more
prone to failure as the control of the hosts may be not as complete as in
the Closed Model. Staniford-Chen’s work would be useful in areas where we
have some level of local network control, but no real control of hosts. This
makes his work most appealing for the Academic Model. It may also be
useful in the Internet Model as a method of detecting user streams entering
and then exiting the internet gateway of a subnetwork.

5 Host-based Tracing of Intruders

In this section we discuss our efforts to reimplement the Caller Identifica-
tion System in the Internet Environment (CISIE)[15] as introduced by Jung,
et.al. We begin by describing CISIE’s components and functionality. Next,
we present our plan for reimplementation of CISIE and discuss the plan’s ad-
vantages and disadvantages. As a result of our work to reimplement CISIE,
we next present several surprising results that make us doubt that CISIE
was ever implemented or tested. We conclude the section by describing new
operating system features needed for CISIE to work properly and also detail
some cryptographic mechanisms that could make a system based on CISTE
more resistant to attack.

5.1 Summary of CISIE

CISIE was developed to trace network attackers across multiple possibly
compromised hosts. Such a situation where an attacker remotely logs into a
host and from there logs into yet another is called an extended connection.
The difficulty in tracing extended connections manually is that hosts do not
normally store information that can easily be used to correlate an outgoing
connection with its corresponding incoming one. CISIE was designed to alert
hosts in an extended connection about all previous “hops” in the connection.
The hosts could then use this information to augment their audit trails or
even for disallowing logins.

5.1.1 Components of CISIE

CISIE is made up of two components, each of which is installed on every
host: the Caller Identification Server (CIS) and an Extended TCP Wrapper
(ETCPW). The CIS keeps a trace for each user who has remotely logged
into the host. A trace is a list of previous hosts (and user identifiers on
those hosts) in the user’s extended connection. The ETCPW is an exten-
sion to Wietse Venema’s well-known TCP Wrapper package[29]. When user
requests a login service from the host, the ETCPW tells the local CIS to
ask the CIS on the host that made the request for a full trace of the user.

5.1.2 The CISIE Protocol

The initial phase of the CISIE protocol is similar to conventional TCP Wrap-
per configuration that uses the ident protocol[12]. The server’s ETCPW
signals the local CIS to do a request for information about the incoming ser-
vice request. The local CIS then makes a request to the remote CIS which
returns a trace for the user. This request consists of the TCP ports that
along with the host addresses identify the TCP connection. If this were an
ident request, the remote host would reply with the user identifier that owns
that end of the connection. Instead, the remote CIS responds with the trace
information associated with the user. Note that if this is the first hop of an
extended connection, the information is basically the same. The local CIS
then stores trace for later use.

The second phase of CISIE consists of authenticating the trace received
in the initial phase. To do this, the CIS contacts all hosts in the trace
except for itself and its predecessor. It asks the CIS on each of the hosts
if the user is logged in. If all reply in the affirmative, the trace is assumed
to be valid and the user may continue logging into the system. Otherwise,
login is denied and an alarm may be raised.

5.2 Reimplementing CISIE

Initially, we had hoped to obtain the source code of CISIE from the authors
of the original paper. However, our attempts to contact them failed possibly
due to language issues or because the primary author of the paper no longer
appears to be at the Seoul National University. Since we were not able
to get the source code for CISIE, we have had to reimplement the system
solely based on the paper. Here we describe the details of our effort to
reimplement CISIE. First we describe our development platform and then
we’ll give a description of our design. We finish the section with the current
status of the implementation.

5.2.1 Development Platform

We chose to implement CISIE for the Linux operating system with kernel
version 2.2.12. Using Linux for this type of development simplifies several
aspects of the project. First, since Linux is open source, we can examine and
even modify kernel source code if necessary. Second, in Linux the interface
used by the ident service is provided via the proc file system. This is a virtual
file system that a user process can read to query data from the kernel. In
other systems, the data must be manually read from kernel memory.

We chose the Java programming language for implementing CISIE. Java
gives us a mostly cross-platform code base and convenient network program-
ming primitives. It also makes it easier to write readable code for others to
examine in the future.

5.2.2 Our Design

Our design is very similar to that proposed in the paper[15]. We chose
to modify TCP Wrappers as little as possible, and to use features of the
wrappers to implement much of what was done in the ETCPW. Our CIS
component aims to have the nearly the same functionality as that described
in the paper.

In examining TCP Wrappers, we found that by configuring it appro-
priately we could have the wrapper spawn a program of our choice upon a
service request. Furthermore, the wrapper could pass the IP addresses of
both ends of the connection to the program. Unfortunately, the wrapper
did not allow for passing the other information needed for the trace, the
port numbers. This means that the only necessary modifications to TCP
Wrappers was to add the ability to pass port numbers to other applications.
This is a relatively minor change, and we plan to submit a patch to the
package’s maintainer as it may be useful in other situations.

When a remote login request is received, the wrapper issues a line of
command shell code that launches a program of our design called Wrap with
the address and port information specified on the command line. Wrap then

sends this information to the local CIS using a localhost-limited TCP socket
thereby requesting a trace. When the trace request is complete, CIS passes
the results back to Wrap which then outputs the trace to standard output
so that a calling shell script can allow or disallow the connection.

The CIS portion of our design is nearly the same as that in the paper[15].
The CIS, as is Wrap, is written in Java and uses multiple threads of execution
to handle simultaneous requests. Our CIS maintains two listening server
sockets. Ome of them is restricted to the local host and implements the
communication between Wrap and CIS. The other handles requests from
the CIS’s on other hosts.

5.2.3 Status of Implementation

For technical reasons described below, our implementation of CISIE is nearly
complete, but it does not function correctly. Wrap is complete, and CIS cur-
rently attempts to implement phase 1 of the protocol as described above.
Phase 2 of the protocol in which the trace is authenticated is nearly imple-
mented. It has been postponed due to problems replicating phase 1. The
incompleteness of the work actually yields our primary result which will be
described below.

5.3 Results of The Implementation

In our attempts to implement CISIE, we have discovered a major technical
difficulty that is not mentioned in the original work. The problem lies in
determining how to link incoming and an outgoing TCP connections so that
the trace can be assembled. Initially, it appeared that the same mechanism
used in ident could be used for this purpose, but it seems that this is not
the case. An ident daemon can determine the client user’s identifier for
a TCP connection because the process that creates the connection usually
runs with the user’s privileges. This implies that the local CIS can determine
the user identifier on the remote host. The problem of determining the local
user identifier associated with an incoming connection to the local host is
different. Anything run by TCP Wrapper can not know this immediately
because the user has not logged on yet. The local end of the connection was
also originally connected by inetd, which runs as root, therefore the user
identifier associated with the local end of the connection is root.

The result of this is that there is no easy known way to use the avail-
able data to correlate the incoming and outgoing trace. This sheds doubt
on whether or not Jung, et. al., had an actual working implementation of
CISIE. The matching of incoming and outgoing connections in CISIE ap-
pears to be a difficult problem and hence would surely have been an issue
covered in their paper. In this light, other inconsistencies show up in the pa-
per. One is regarding the method used to authenticate the streams in phase

2. In Section 2.2 of the paper, item 7 suggests that the CIS’s authenticate a
substantial part of the trace whereas in Section 2.3.3, we see that the CIS’s
are just verifying that a user identifier “has a process.” Finally, the issue of
whether CISTE has been implemented is never directly addressed. We might
expect implementation details such as operating system and version, pro-
gramming language, and possibly real-world experiences with the system,
but there are none.

5.4 Modifications to CISIE

We had proposed to experiment with modifications to CISIE, but since
we have had to reimplement a system that has substantial undocumented
or unknown issues, we have not made any such modifications. Below, we
roughly describe some possible additions or techniques to first make CISIE
work and secondly to secure and enhance CISIE.

5.4.1 System Features Needed

As described above, the operating system (Linux in this case, but Unix-like
operating systems in general) do not provide any easy way to match the
outgoing connections with the incoming ones. It may be possible to do so
with a variety of techniques with varying degrees of accuracy. We foresee
future work in determining the best mechanism to match these connections.
Possibilities for this include searching through kernel data structures to at-
tempt to make the match, or modification of the kernel such that it denotes
all processes belonging to a given user session with a unique identifier that
can be used to match the incoming and outgoing connections.

5.4.2 Securing CISIE with Cryptography

The CISIE protocol as initially presented in the paper ignores the security
of the CISIE protocol itself. Because of this, a savvy attacker could pretend
to be a previous CIS or possibly query the CIS’s in the network to track
authorized users to either subvert the system or compromise the users’ pri-
vacy. The end of the paper suggests a public key method to prevent this,
but it is flawed. Here we present a number of suggested modifications to the
CISIE protocol to help secure it.

The paper’s brief section on securing CISIE suggests that public key
cryptography be used to verify that the sender of a Caller Path Request is
a CIS. Their suggestion is that a replying CIS would encrypt the reply with
the recipient’s public key. This does make it so that only the appropriate
recipient could read the reply, but it ignores replay attacks. It also ignores
the overhead involved with a public key infrastructure (PKI).

Our suggestion is that if the expense of a PKI is warranted, we can do a
much better job than this. Since most interactions in CISIE are of the form

client request and server answer, we could simply have the client encrypt
requests with the server’s public key and include a random nonce in the
message. The server can then respond by including the nonce sent by the
client, encrypting with the client’s public key, and signing the message with
the server’s private key. This simple set of modifications should eliminate
most forms of replay attack. Further modifications might have the client
sign each request as well so that only valid CIS’s can request a trace be
done. One area of future study for others is to consider modifications that
do not require a public key infrastructure thereby allowing for lighter weight
protocols.

5.5 Conclusions about CISIE

We have made a substantial effort to reproduce results reported by Jung,
et. al. Unfortunately, we have been unsuccessful and even doubt that an
implementation existed prior to the writing of their paper. We have also
discussed modifications to the Linux (or other) operating system to make
CISIE work. Finally, cryptographic methods have been considered to help
secure the CISIE protocol, but implementation seems unwarranted until the
protocol has been shown to work.

6 Network-based Tracing of Intruders

In order to determine the identity of a network attacker, it may be necessary
to be able to trace back a chain of connections between network hosts to
its origin. Omne might consider performing this task at the host level of
each machine in the chain. However, there are a number of problems with
this. A user might have multiple open connections, making it difficult to
associate specific ones to those on other hosts. Header information can
change, also complicating the successful matching. A user might even change
services within the chain of connections on a particular host, e.g., from
telnet to rlogin. Covert channels on a host, even though unlikely, can render
a host-based solution virtually worthless. Last but not least, a host can
be compromised by an attacker, leaving the usefulness of any audit data
questionable. Thus it seems reasonable to also examine and pursue network-
based approaches.

One approach, taken by Stuart Staniford-Chen [26], is to analyze prop-
erties of the TCP stream itself between pairs of hosts. The goal of the
approach is to find certain characteristics within the stream that uniquely
sets it apart from other streams. Ideally, those characteristics will persist
throughout the chain of connections. Staniford-Chen introduces the concept
of thumbprints to achieve this goal. A thumbprint is a short piece of data
that summarizes the content of a connection. It should have the following

properties: small size, sensitivity to the content, and robustness. Further-
more, the thumbprints should be additive, easy to compute, and be easily
comparable. Under the current model, only telnet and rlogin sessions are
considered. This is due to the fact that content within the stream is used,
and these services do not change the content at each hop as some encrypted
services do.

In this model, a number of network sniffers are placed at appropriate
points in the network, and at each location information about each TCP
stream is collected. Each stream is divided into intervals, typically of one
minute length. This allows for comparing portions of the stream. Over the
time of one interval, a vector, represented as an array of integers, is used to
keep track of the number of occurrences for each of the possible 128 ASCII
characters in the TCP packets of the stream. This vector by itself might
suffice as a thumbprint as it identifies a connection or a stream. However,
the vectors are quite large, and effectively comparing two vectors might
become difficult.

To compress the size of the thumbprint and to provide better means of
comparing them, Staniford-Chen proposes principal component analysis to
provide a function that emphasizes more unusual characters over those that
are frequently used in all or most telnet or rlogin traffic.

6.1 Local Thumbprints

The author proposes what he calls local thumbprints, where “[...] the thumbprint
is a sum of terms, each of which depends only locally on the character stream

to be thumbprinted” [26]. Thus, for a simple thumbprint vector T} with j
components, he suggests T; = %Zl ¢j(a;), where n denotes the number of
characters in the alphabet and the a; stand for those individual characters.

In the experiments described in the paper, this definition of a thumbprint

is used, and therefore will be the only one discussed here.

The function ¢; is obtained through principal component analysis de-
scribed below. Essentially, for each character a; of the alphabet and each
component j of the thumbprint, ¢; is simply a factor that helps emphasizing
characters that are more atypical for a telnet session. A big advantage of
having a fairly easy thumbprint function is that it is very easy to compute.
Most of the work is spent obtaining the function, which can then be stored
in a simple look-up table.

6.2 Comparing Thumbprints

For comparing thumbprints effectively, Staniford-Chen develops a scheme
that magnifies differences between components and considers the proposition
that, when successive thumbprints match over a longer time period, they are
likely to be related. For this purpose, a probability approximation P’(§) is

created by randomly choosing pairs of thumbprints out of a sample pool
and calculating logarithm of the product of the differences of the individual
components. The resulting distribution can then be used to approximate the
probability of a given §. The smaller the probability, the more likely it is
that the streams are related. For successive intervals of time, the individual
probabilities can be multiplied. The author refines this method to a great
extend, using statistical models, which are beyond the scope of this report.

Again, as for the ¢-function discussed above, most of the work is per-
formed in advance on sample data. Once the approximate distribution is
found, comparing pairs of thumbprints is a matter of a few multiplications
and additions. Note, however, that one cannot know in advance which
thumbprints should be compared with each other. The author doesn’t ad-
dress this issue directly.

6.3 Principal Component Analysis

Principal component analysis is a methodology adapted from statistics, and
Staniford-Chen gives two references [16, 9]. The goal is to find directions in
a set of vectors that respresent more of the variation within those vectors
than any other direction. For this purpose, a covariance matrix is calculated
over the elements of the vectors. Then, the eigenvalues and eigenvectors of
the matrix are computed. The eigenvectors that belong to the largest eigen-
values are then taken, and its individual components describe the function
¢.

Assume that the thumbprints have ¢ components over an alphabet of n
characters. For a sample of IV vectors, the following steps need to be taken
to calculate ¢:

1. Calculate the covariance matrix Cj;, = % ZZ‘]L(%J' — ;) (zip — Tk),
where Z; and Ty are the averages in each direction, respectively.

2. Take the c largest eigenvalues of C;k and the eigenvectors that belong
to those, €1, - -, €.

3. ¢1 now corresponds to €7, ¢s to €3, and so on. Le., ¢;(a1) is the first
component of €}, ¢;j(az) is the second component of €] etc.

6.4 Implementation

We asked Mr. Staniford-Chen as well as faculty at the University of Cali-
fornia Davis for source code. This request being denied, the thumbprinting
approach is currently being implemented using the machines provided for
the project. The software platform for the project is Linux, Kernel version
2.2.12. The following assumptions had to be made, as the paper does not
discuss them:

e All TCP packets without explicit data content such as SYNs, ACKs,
and FINs are not considered for the thumbprint calculation.

e [t is assumed, that the eigenvectors obtained as described above indeed
constitute the factors of the function phi. The author never explicitly
mentions this, but it is the only reasonable approach.

e It is assumed that taking the first ¢ largest eigenvalue/eigenvector pairs
also results in the thumbprint consisting of ¢ components.

e TCP connections will all start with a SYN packet and will all end with
a FIN packet.

Our implementation differs from that of Staniford-Chen in that we dif-
ferentiate between the two ends of a TCP connection. By doing so, we hope
to achieve an even better characterization of the stream. If desired, one
can always add the two thumbprints to achieve one that characterizes both
directions of the stream.

For the purpose of examining the TCP streams, the libpcap library [17]
was utilized. Much of the programming code was adapted from Stevens [28]
from examples using that library.

The parameters were kept the way as described in the paper [26]. Thus
the time interval has a length of one minute, only the first 128 ASCII char-
acters are considered, and the thumbprints will consist of 6 components.

The program establishes a counting array for each individual connection,
that is, for each 4-tuple <source IP-address, destination IP-address, source
port, destination port>, an array with 128 counters - one for each possible
character - is created. As data is being sent, the counters are increased
appropriately. An alarm will interrupt every 60 seconds, and the arrays can
then be treated as the vector that describes the stream. The thumbprint
function can then be applied and the thumbprint be stored. After that, the
counters in the array are reset to 0.

Obtaining good quality sample data is a very important aspect of the
implementation. Indeed, the overall success will almost solely depend on it.
After a collection of artificially generated sample TCP traffic data that was
provided to us early in the project proved to be insufficient for our purpose,
actual user data is currently being gathered within the Computer Science
Department of Purdue University.

For this reason, the developed program yet lacks a proper thumbprint
function, and the comparison routine is not yet existent.

By the time this report is finished, the first data set should be available,
and we will be able to proceed to evaluate the ¢-function as well as the
probability distribution P’(d). A second data set will be generated and
compared against the first. After that, the ¢-function can be incorporated
into the program, and the comparison routine can be developed.

6.5

Shortcomings

There are several flaws and shortcomings with the thumbprint approach.

1.

The whole computation of the thumbprints is solely based on content.
If encryption is used with different key pairs between different hosts,
the thumbprints will differ greatly, indicating (falsely) different TCP
streams.

It is unclear why Staniford-Chen limits his work to an analysis of con-
tent. Clearly, similar vectors to the content-based ones can be created
for packet frequency and idle times. Those could be processed in a
similar fashion and evaluated. Thumbprints obtained that way could
then be compared within their own classes (content, timing, idle-time),
or one could think of a way to combine them, taking all the character-
istics of the stream into account. This way, the thumbprinting scheme
would not solely depend on content alone, and maybe could still suffice
in analyzing encrypted traffic. However, there are also ways to perturb
the other two characteristics of the stream.

The choice of Principal Component Analysis to determine the optimal
thumbprint function is disputable. Even though ”[the] aim of prin-
cipal component analysis is to take a series of vectors and find a set
of linear combinations of the components which explains the maximal
proportion of the variance of the vectors [...]” [26], the author never
argues why this approach is the best choice. Other methods for ob-
taining ¢, such as a genetic algorithm or machine learning scheme also
seem feasible.

Several other choices the author made seem rather arbitrary and are
not explained satisfactorily: why sample the stream in intervals of one
minute length? He only differentiates against a 10 second long interval.
Why use only the first 6 principal components?

The author doesn’t provide any ideas as to how to choose thumbprints
that should be compared with each other. Initially, when comparing
a particular thumbprint of a stream that was used for an attack on
host A to thumbprints of host B, one might limit the range of prints
to compare to those that lie in a certain time interval prior to the
attack. However, if no thumbprints match, it does not guarantee that
host B was not part of the chain of connections, as an attacker could
certainly have caused a delay in execution of commands. Thus, in the
worst case, all thumbprints of host B have to be compared, resulting
in a very negative performance impact.

6.6 Conclusions about Staniford-Chen

Stuart Staniford-Chen’s work is a start. It allows for an efficient and fast
computation of local thumbprints for telnet and rlogin sessions. The un-
derlying theory has a well-established foundation in statistics. A major
advantage of the approach lies in the fact that a vast part of the compu-
tation can be performed in advance, reducing the actual calculation of a
thumbprint to a few mathematical operations. Local thumbprints seem to
work extraordinarily well within the given environment, even though this
claim has yet to be verified.

However, there are many unanswered questions. The most obvious flaw
is, of course, the solitary focus on data content alone. Staniford-Chen makes
it rather easy for himself this way, leaving out other important information
about the data stream. Besides content, there is also meta information about
the stream. One can look at timing, idle times, and at header information
that remains constant. Ideally, all those factors should be incorporated into
a thumbprint. In order to prevent a thumbprint from becoming useless if
one or more of the session characteristics are circumvented, the components
should be stored separately. A new comparison function needs to be created
that combines the components, but also allows for individual inclusion or
exclusion of features.

Even though Staniford-Chen gives a thorough discussion about the un-
derlying theory of his approach, it becomes obvious that the work he has
performed covers only a small part of what needs to be done. In many
cases, he arbitrarily picks the value of a parameter, sometimes after only a
little pre-evaluation, and then sticks with it for the rest of his experimen-
tal results. There are many parameters to this problem, generating a huge
search space for the optimal combination. There are many open questions
concerning these parameters. What is the best number of thumbprint com-
ponents? How long should the timing interval be? Are local thumbprints
as good, better, or worse than the higher-order thumbprints he discusses?
What constitutes the best thumbprint function? All these questions will
have to be answered in the future.

Another concern is that of the thumbprint ¢-function. The way it is con-
structed leads directly to the following questions: What kind of sample data
needs one to take to best capture “ordinary” telnet and rlogin features? To
what extent do individual or sequences of characters stand out to character-
ize individual streams? Is there a single “ideal” thumbprint function? Right
now, the ¢-function is static. It is pre-computed, and will never change from
that point on. It might be desirable, to be able to adjust the function, as
features of TCP streams might change over time. As a matter of fact, this
might be a major disadvantage of principal component analysis. In order to
change the function, a new covariance matrix needs to be computed, and its
eigenvectors and eigenvalues calculated. This amounts to the same extensive

work as the initial computations. A machine learning approach could lead
to more efficient results. Once the training phase with the sample data set is
complete, the functions can be updated by incorporating new samples into
the process. This can be done without having to recompute any previous
calculations. Thus, a machine learning approach and its effectiveness might
be well worth pursuing. This way, it might also be possible to find other
important distinctions between data streams than the greatest variation.

Comparing TCP streams on a network level is very important. Staniford-
Chen introduces a new concept for doing so, and he explores a small fraction
of the overall framework. There is yet plenty of research to be done in the
area. If the obstacles mentioned in this report can be overcome, this tech-
nique could evolve into a very useful methodology. Note, however, that any
attempt of matching streams is subject to countermeasures by a determined
attacker. In addition to encryption, tools can be created that randomly ob-
scure timing and idle time information on a per session basis. Streams can
be split up, sent through chains of different hosts, and later be combined
again. Those are problems that are yet to be solved.

7 Conclusions Regarding Our Implementations

In this paper, we have discussed our work towards implementation and evalu-
ation of two known approaches to tracing network intruders. CISIE appears
to have been designed but possibly not implemeted by its authors. Our at-
tempts to recreate their system uncovered the crucial problem of correlating
incoming TCP connections with the outgoing ones. This is difficult although
probably doable on the host by either using intimate knowledge of the op-
erating system to make the correlation or by making minor modifications
to the kernel of the operating system itself. We have also outlined some
possible approaches to securing CISIE against tampering. We have also dis-
cussed Staniford-Chen’s thumprinting techniques. We conclude that while
his work is a good start in the area, there remains a great many unanswered
questions about the work. There are many parameters of his approach that
seem set arbitrarily, and it is unclear that the scheme will work in the real
world, in which attackers use encryption to hide the contents of their data
streams.

8 Attack Traceback Workshop

The Attack Traceback Workshop was held by CERIAS from September 6th
through the 8th. For the convenience of the those invited, the workshop was
held at the Sheraton Gateway Suites in Rosemont, Illinois, near Chicago’s
O’Hare International Airport.

The workshop’s goals were to learn the current work being done in the
area of attack traceback, share ideas about the topic, and generate diverse
discussion between various parts of the community. To accomplish this, we
invited academic and industry leaders who are known to have done research
in attack traceback, business representatives in networking and software,
and legal experts from both the private and public sector.

The schedule of the workshop was laid out as follows. The workshop
began with an informal reception held on the evening of September 6th. This
encouraged attendees to arrive early and allowed them to get to know one
another. The first half of the 7th was occupied by introductory presentations
by the attendees about their own work. The remainder of the 7th and early
portion of the 8th was devoted to group meetings as detailed below. The
workshop concluded around noon on the 8th with open discussion on the
outcomes of the workshop.

8.1 Presentations

Introductory presentations were initially given by Eugene Spafford, Clay
Shields, and Tom Daniels, all of CERIAS. Following these presentations,
others were allowed to speak about their own work and perspectives. Below,
we briefly summarize the content of these presentations.
Eugene H. Spafford, CERIAS, Purdue Dr. Spafford began the workshop
with some opening remarks and thanked the attendees for their time. He
also laid out the agenda for the workshop.
Clay Shields, CERIAS, Purdue Dr. Shields gave brief descriptions of the
problems that lead to the need for attack traceback. These are as described
earlier in this document.
Tom Daniels, CERIAS, Purdue Mr. Daniels pointed out that there is a
more general problem than attack traceback, namely tracing network traffic.
He also outlined eight desirable properties of traceback systems and possible
tradeoffs. They are accuracy, precision, subversion resistance, low overhead,
low cost, scalability, realtime, and privacy.
Adrian Perrig, UC Berkeley

Routers probabilistically mark packets (5%) in 16 bits of the IP header
(fragmentation information). A hashing scheme is used that was not further
discussed in detail. In a basic version, the neighbouring routers’ IP addresses
are stored. In a more advanced scheme, the 16 bits are split in a 5 bit
distance and 11 bit hash of the routers’ addresses. This implies the existence
of an approximate topology map of upstream routers that is accessible to a
victim. Best results were achieved with a 3 bit flag id, a 5 bit distance and
an 8 bit hash of the addresses
TESLA

Routers commit to a chain of keys which they use to mark packets. The
chain is released after a delay so that markings can be verified by clients.

Steven Bellovin, AT&T Labs
ICMP traceback messages

The methodology requires a large amount of traffic to be generated.
With a low probability (1/10000), routers send ICMP packets with infor-
mation about the packet to the destination. The TTL is set to 255, so that
a distance measure can be established.

Congestion controls

If data streams are ignoring control flow messages from the routers, they
are flagged as misbehaving. A penalty box will discard more packets from
misbehaving streams in order to balance the load more evenly.

Stuart Staniford

The goal is to automate the process of obtaining ISP logs accross (inter-
national) boundaries. The creation of an agency was suggested that locally
allows to query ISPs that fall under its jurisdiction. If lines of jurisdiction
are crossed, the agency has to contact its proper peer to obtain the neces-
sary information. Law enforcement need only contact the agency, which will
perform the traceback without disclosing any sensitive other information.
Dan Sterne, NAI
Cooperative traceback and response

For traceback and other purposes, an intrusion detection and isolation
protocol was devised. If an event occurs, a query is being propagated among
cooperating neighbours to the source of the attack or to an uncooperative
network. The approach requires a controller that monitors for intrusions
and then handles the queries and propagets them to its peers.

Felix Wu, UC Davis

While the traditional firewall technology separates the network verti-
cally into protected zone and public network, the aggregated internet traffic
toward a particular destination can also be separated horizontally into dif-
ferent packet flows. Horizontal separation by itself is not a new idea as it has
been realized implicitly or explicitly in many existing network protocols and
architecture. However, this important concept has not been integrated into
today’s IDS/IRS technology to handle many difficult network security issues
such as denial of service attacks. The concept of Horizonal Separation is uti-
lized to resolve the problem of DDoS (Distributed Denial of Service) attacks
in an inter-domain environment. Based on this concept, a prototype system
called DECIDUOUS (DECentralized IDentification of intrUsion sOUrseS)
was developed.

[PSec tunnels are used to forward packets into other networks. Thus
endpoints at borders can be easily identified. It can be shown that two
permanently established tunnels per borderpoint are sufficient for routing
that allows such a traceback.

John Lynch, Department of Justice Mr. Lynch outlined some general ar-
eas of importance to the DOJ regarding traceback information. He was
concerned with how data is collected, chain of custody issues, and types of

data collected. He pointed out that information passed along as part of a
protocol is better than protocols that query back to remote sites. This is
because it could complicate the evidentiary requirements as multiple repre-
sentatives might be needed to authenticate the data. He continued
William Cook, Winston and Strawn

Abigail Abraham, Assistant State’s Attorney, Cooke Co., Illinois

8.2 Group Meetings

Following the presentations of various members of the legal communitee,
the conference divided into three discussion groups to discuss the following
topics:

e Group 1 — Business and Social Aspects of Traceback

e Group 2 — Technical and Operational Issues involved in Traceback

e Group 3 — Legal, Regulatory, and Marketplace Issues

The next few sections describe the results and conclusions of each of
these working groups.

8.2.1 Business and Social Group

The business group identified the following major problems that businesses
generally face with attacks:

e It is very hard to determine who is liable if an incident happens.
e Where does an intrusion originate?

e How can one distinguish between legitimate requests by clients and
competitors illegally gathering information? What is the line of toler-
ance for a business?

e Is the business being used as a third party for an attack?

In the discussion, it became clear that different businesses have different
expectations. A business that operates internationally will need clear legal
guidelines in forms of not only laws, but also international treaties that
signify cooperation among those countries but also lay out the rules as to
what a business has to consider when employing traceback technology.

A small business that operates within its national boundaries might be
more concerned with the cost of employing the technology and what im-
plications it would have for them if they failed to take the required steps
necessary to adhere.

In general, the question arises what happens if the requires cooperation
is not achieved. Data havens on an international scope or businesses refusing
to cooperate can seriously hinder traceback efforts to a point where it will

become useless for a business as the above described problems can no longer
be solved.

Furthermore, currently traceback technology can only provide a network
address as the final source of an attack. From a business perspective, this
might not be sufficient. Cases can be thought of where the network address
alone gives no clues whatsoever as to who the human being behind the attack
is. At that point, agin, the liability question arises.

From a technology perspective, businesses are very concerned about the
misuse of traceback: is it possible to deceive or even frame people or busi-
nesses with the traceback technology? This will be one of the driving aspects
concerning the acceptance of traceback.

Another crucial point is the question who will control traceback. In
general, it is very unlikely that there will be an overall acceptance as to who
can be trusted fully by everyone and therefore should control it. It might
be worthwhile trying to establish some sort of trust relationship models for
this purpose, maybe in form of a grammar.

In conclusion, the members of the discussion group agreed that busi-
nesses will need some sort of incentive in order to agree to traceback. Money
and cost being the most prominent drivers, the necessary incentives could
be achieved in various ways or some combination thereof:

e Offer economic rewards. This could be done by businesses themselves,
invoking penalties on uncooperative businesses, or intensifying eco-
nomic relationships with coorperating ones.

e Establish clear legal guidelines and liability framework, so that costs
of litigation become tangible.

e Let insurance companies gather statistical data which will then be used
to establish an insurance model for e-commerce. Then the insurance
premiums can be used as a cost measurement.

8.2.2 Technical and Operational Group

Initially, the technical and operational group began by struggling with defin-
ing the problems in network traceback. Eventually, the group decided to
build an operational model of the problems facing someone trying to trace
an attack. Shown below, the model describes a network scenario where three
different types of intermediaries are being used to obfuscate the source of
the attack.

From the victim’s perspective, each number labels a different research
problem as listed below.

1. Determining the source of a packet

2. Determining the source of the stimulus of a reflector

5 3

Stepping
Stone

Attacker Zombie Reflector Victim

Figure 5: Operational Model

3. Reversing 2-way to 1-way application-level laundering
4. Determining the source of a 2-way connection
5. The stepping stone problem: 2-way to 2-way connection laundering

Related work was done on terminology. A zombie would represent a host
that may be compromised that may be running a trojan horse. The time
between its stimulus and its output may be arbitrary. A reflector is bound
to its behavior by a given protocol specification and is not considered com-
promised, but behaving normally. A stepping stone may be compromised,
but it is being used to relay data in a time-bounded fashion such as a host
being used to launder user session streams.

The discussion next considered tracing causality across a host. If we
place a limit on the delay, what is possible? It was agreed that many things
may be possible in some environments, but it was unknown what all of them
were. This conversation devolved into the secure OS problem.

The group concluded that basic models and terminology are still needed,
but we made a bit of progress. There are two main problems: packet tracing
in an understood network and causality within the host. It was agreed that
packet tracing is possible given sufficient driving force, but it was unclear
how much is possible in arbitrary hosts.

In the final session, the group worked on identifying small steps that can
be taken by the community. These were grouped as follows:

e Nomenclature

o Identifying Source of Packets More work is needed on the following in
routers: better user interfaces, diagnostic features, querying features
for tracing packets, marking facilities, logging and storage features,
and more flexible control interfaces. Also, the existing techniques for
tracing packets must continue to be improved and be better under-
stood.

e Stream Matching Using content may be legally difficult. Further work
must be done to advance these techniques.

e Determining Causality Through Hosts It’s important to determine the
limits (theoretical and practical) both on the host and outside of it.

e Limits of overall approaches Further work can address simulating and
modeling proposed techniques. Interesting measures such as what is
the cost of providing a given level of accuracy should be investigated.

e Infrastructure Management New work should address how to best
manage a distributed tracing infrastructure. This would include work
on trust models, cooperation, deployment, and where to maintain trace
state.

8.2.3 Legal Group

The legal group spent the first part of their time discussing the various
applicable statutes and laws in the United States of America. Title 18 of
the United States code has several relevant sections:

e 1030 — Computer Hacking

2511-2521 — The Wiretap Act

2701-2711 - Disclosure of information to government
e 3121-3126 — Pen Registers & Trap and Trace

The government is bound by stricter rules than corporations when it
comes to data sharing for activities such as network traceback. Sharing of
some of the network data between companies is permissable, but the sharing
of the same data with anyone acting as an agent of the government is illegal.
It was noted that this twist was likely the result of business lobbying for an
exemption to allow them to share marketing information.

It was the consensus of the individuals participating in the discussion
that the disclosure of header and routing information to the government
would be legal, but disclosing any of the content would not. However, it was
difficult to come to any consensus as to what the definition of “header infor-
mation” really described. Certainly the source and destination information
on a packet is header and routing information; however, if the payload of
the packet is an SMTP header describing where email is being sent/routed
is that content (and illegal to use) or header (and legal)? It may take a few
actual court cases to get things sorted out.

Another twist that ISPs would be faced with is that the release of content
by a legitimate user would likely be illegal (barring any contract negotiated
in advance between the ISP and the customer), but an non-legitamate user
would not be protected in this fashion. Of course, the tricky part is deter-
mining the legitimacy of any particular connection.

The lawyers in the group described an interesting situation that occurs
regularly in the world of voicemail and now has been applied to electronic
mail as well. Since the government is barred from content of data in transit,
an unheard voicemail or unread email is off limits to them without a warrant.
However, once it has been read, it is considered to be just a file on a computer
system that could be shared as any other file was.

In regards to the technical presentations made earlier in the day, the
lawyers indicated that making queries to block traffic (e.g. Distributed De-
nial of Service attacks) would be acceptable, but the same type of queries
to be used to trace back a connection would be unacceptable and possibly
illegal.

9 Overall Conclusions

We have presented an overview of our work in attack traceback. As part
of this work, we have demonstrated the considerable difficulty we have had
in recreating the past work of others and discussed several approaches to
dealing with these difficulties. Also, we have summarized the events of the
Attack Traceback Workshop in their business, legal and academic aspects.
The greatest conclusion to be drawn from all of this is that much is left
to be done in this area. There are many approaches being defined to solve
the problem, but we still do not know how they compare and what their
ramifications are likely to be.

References

[1] ASSISTANT, L. P. W. Available at
http://www.bell-labs.com/projects/lpwa.

[2] BELLOVIN, S. M. Security Problems in the TCP-IP Protocol Suite.
Computer Communications Review 19, 2 (April 1989), 32-48.

3] CA-96.21, C. A. TCP SYN Flooding and IP Spoofing Attacks.
http://www.cert.org/advisories/ CA-96.21.tcp_syn_flooding.html,
September 1996.

[4] CA-97.27, C. A. FTP bounce. http://www.cert.org/advisories/
CA-97 .27 .FTP_bounce.html, Dec 1997.

[5] CA-97.28, Cc. A. IP Denial-of-Service Attacks.
http://www.cert.org/advisories/ CA-97.28.Teardrop_Land.html, = De-
cember 1997.

6] CA-98.01, C. A. ‘Smurf” IP Denial-of-Service Attacks.
http://www.cert.org/advisories/CA-98.01.smurf.html, January 1998.

[7] CA-98.13, C. A. Vulnerability in Certain TCP/IP Imple-
mentations. http://www.cert.org/advisories/CA-98-13-tcp-denial-of-
service.html, December 1998.

[8] CHANG, H., AND D.DREW. DoSTracker. This was a publically avail-
able PERL script that attmepted to trace a denial-of-service attack
through a series of Cisco routers. It was released into the public do-
main, but later withdrawn. Copies are still available on some websites.,
June 1997.

[9]

[10]

[11]

[12]

[14]

[15]

[19]

[20]

[21]

[22]

CHATFIELD, C., AND COLLINS, A. Introduction to Multivariate Anal-
ysis. Chapman and Hall, London, 1980.

CHAUM, D. L. Untraceable electronic mail, return addresses, and dig-
ital pseudonyms. Communications of the ACM 24, 2 (February 1981),
84-88.

CLARK, D. The Design Philosphy of the DARPA Internet Protocols.
In Proc. ACM SIGCOMM (August 1988), pp. 106-114.

JOHNS, M. S. Identification protocol. Request for Comments 1413,
February 1993.

JONCHERAY, L. Simple Active Attack Against TCP. In Proceedings of
the Fifth USENIX UNIX Security Symposium (Salt Lake City, Utah,
June 1995).

Jung, H. T., Kim, H. L., SEO, Y. M., CHOE, G., MIN, S. L., Kim,
C. S., AND KoH, K. Caller id system in the internet environment. In
UNIX Security Symposium IV Proceedings (1993), pp. 69-78.

Jung, H. T., Kim, H. L., SEo, Y. M., CHOE, G., MIN, S. L.,
K, C. S., AND KoH, K. Caller identification system in the internet
environment. In UNIX Security Symposium IV Proceedings (1993),
pp. 69-78.

KrzaNOWSKI, W. Principles of Multivariate Analysis. Clarendon
Press, Oxford, 1988.

LABORATORY, L. B. N. ftp://ftp.ee.lbl.gov.

MANSFIELD, G., OHTA, K., TAKEI, Y., KATO, N., AND NEMOTO,
Y. Towards Trapping Wily Intruders in the Large. In Proceedings of
the Second Annual Workshop in Recent Advances in Intrusion Detec-
tion(RAID) (West Lafayette, IN, September 1999).

MORRIS, R. A Weakness in the 4.2BSD Unix TCP-IP Software. Tech.
Rep. 17, AT&T Bell Laboratories, 1985. Computing Science Technical
Report.

Prtacek, T. H., AND NEwSHAM, T. N. Insertion, Evasion, and De-
nial of Service: Eluding Network Intrusion Detection. Tech. rep., Se-
cure Networks, Inc., Suite 330, 1201 5th Street S.W, Calgary, Alberta,
Canada, T2R-0Y6, Jan. 1998.

REED, M. G., SYVERSON, P. F., AND GOLDSCHLAG, D. M. Proxies

for anonymous routing. In 12th Annual Computer Security Applications
Conference (December 1995), IEEE, pp. 95-104.

REITER, M. K., AND RUBIN, A. D. Crowds: Anonymity for web
transactions. Tech. Rep. 97-15, DIMACS, April 1997.

23]

[24]

[25]

RoOWE, J. Intrusion detection and isolation protocol: Automated re-
sponse to attacks. Presentation at RAID’99, Sep 1999.

STANIFORD-CHEN, S., AND HEBERLEIN, L. Holding Intruders Ac-
countable on the Internet. In Proc. of the 1995 IEEE Symposium on
Security and Privacy (Oakland, CA, May 1995), pp. 39-49.

STANIFORD-CHEN, S. G. Distributed tracing of intruders. Master’s
thesis, University of California, Davis, 1995.

STANIFORD-CHEN, S. G. Distributed tracing of intruders. Master’s
thesis, University of California Davis, 1995.

STEVENS, W. R. TCP/IP Illustrated Volume 1. Addison-Wesley Pub-
lishing Company, 1994.

STEVENS, W. R. UNIX Network Programming, second ed., vol. 1.
Prentice Hall, Upper Saddle River, 1998.

VENEMA, W. TCP wrappers. available at ftp://ftp.win.tue.nl/
pub/security/tcp_wrappers_7.6.tar.gz.

WEB SITE., A. Available at http://www.anonymizer.com.

ZHANG, Y., AND PAXSON, V. Stepping Stone Detection. Presentation
at SIGCOMM’99, New Areas of Research, August 1999.

	CERIAS Tech Report 2002.pdf
	Florian Buchholz, Thomas E. Daniels,
	Benjamin Kuperman,Clay Shields

