Benchmarking Operating Systems’

Nicholas Hatt
Oberlin College '08

nhatt@cs.oberlin.edu

ABSTRACT

Benchmarking of computer systems is an important,
albeit sometimes tedious task that gives insight into
the performance of a system, exposes flaws, and al-
lows for comparison between systems or versions. Cur-
rent benchmarking suites for the UNIX operating sys-
tem are strongly weighted towards CPU and hardware
performance. As operating systems grow more com-
plex, so do the applications running on them. The type
of open benchmarks that are widely available today do
not take this into account, making them somewhat un-
realistic and uninformative. We present our solution to
this problem which was used to benchmark a library
for UNIX we were developing this summer. We discuss
tools used, rationale, and conclusions based on the effi-
cacy of each test. We also present drawbacks and future

directions for the work.

1. INTRODUCTION

Benchmarking produces valuable data, ex-
poses bugs and flaws in a system, and can
offer a straightforward, numerical compar-
ison of the performance difference between
two systems. As the complexity of computer
systems increases, it is harder to discover
whether new software will increase perfor-

*Result of summer undergraduate research in 2007

TFacuIty Advisor

Axis Sivitz
_Oberlin College "08
asivitz@cs.oberlin.edu

L T
Benjamin A. Kuperman
Oberlin College
Computer Science

kuperman@cs.oberlin.edu

mance, decrease performance, or have no ef-
fect at all. Determining impact is very im-
portant. For example, a new feature meant
to increase performance at the cost of code
complexity may not warrant inclusion if the
benefit is not measurable, or a new secu-
rity feature may significantly decrease per-
formance. A developer can save time, effort,
and money by immediately discovering how
his or her changes impact performance. A
benchmarking program can give the devel-
oper rudimentary feedback on the impact of
their changes without having to get feed-
back from users.

2. LEGACY BENCHMARKS

Several benchmarking suites are available for
Linux, including LMbench!, UnixBench?, and
HBench-OS3. These three benchmarks have
not been updated since the 1990’s. In the
time since then, operating systems have grown
in complexity and these tools do not exercise
a large part of a system’s functionality. The
benchmarks rely on CPU intensive bench-
marks, e.g., floating point calculations, so
they are useful in comparing two different
hardware configurations. In our research,
we want to see what kind of performance
impact our changes have on total system us-
age. Hardware benchmarking tells us noth-
ing. With few alternatives, however, these
legacy tools are still in use today. [3]

'"Website at http://www.bitmover.com/lmbench/
?Available at http://www.tux.org/pub/tux/niemi/
unixbench/

3Website at http://www.eecs.harvard.edu/vino/
perf/hbench/

63

2.1 LMbench

LMbench is a tool that is designed to test
the speed of data transfer between proces-
sor, memory, cache, disk, and network.[4] To
a system designer, these present the biggest
bottlenecks in hardware. Specifically, la-
tency and bandwidth issues can be found us-
ing LMbench. However, because these tests
specifically measure hardware performance,
they are not useful as system software bench-
marks.

2.2 HBench-OS

HBench-OS is benchmarking suite developed
as part of a senior thesis at Harvard.[1] Based
on our own analysis of the source code, it
is almost identical to LMbench in terms of
actual tests done, as it is branched from
LMbench. The difference is in the testing
methodology; specifically, making the tests
easier to set up and run. This provides bet-
ter data, but not better benchmarks.

2.3 UnixBench

UnixBench is a benchmarking suite with that
seeks to test overall system performance. The
tests focus on different aspects of OS func-
tionality (process spawning, interprocess com-
munication, filesystem throughput), but only

using small, focused programs. In other words,

the tests cover a large amount of function-
ality, but in a way that is unlike the normal
operation of the system. Thus, the results
cannot be trusted as representative of nor-
mal system performance.

All three benchmarking suites contain tests
which measure certain aspects of OS perfor-
mance. These include a C compiler test, a

system call overhead test, and a fork()+exec()

test. These tests have the right idea, but
fail to fully encompass the complexity of a
modern operating system. For example, the
C compiler test compiles the famous “Hello
World” program, only 3 lines of code. It
then does this over and over to get an av-
erage. While compilation may be a good

64

measure of everyday use, the lack of com-
plexity in this benchmark does not paint as
accurate of a picture as we would like. After
all, who besides a CS student would compile

Hello World?

The system call (syscall) overhead and the
fork()4exec() benchmarks have the same
flaw. For syscalls, the benchmark will loop,
calling a syscall, and see how long it takes to
perform a set number of iterations. Fork+exec
is the same way, looping and creating as
many new processes as possible. These are
both critical OS primitives, but they do not
take into account the complex interaction
between these elements in a normal program
or system operation. The benchmark is ask-
ing “How fast can you do this one thing?”
which can be a useful measure of changes to
either fork() or exec; however, we really
want to know how it behaves while perform-
ing any number of different tasks simulta-
neously. For this reason, these benchmarks
skew towards being CPU-dependent bench-
marks. Furthermore, modern computer sys-
tems make extensive use of caching to ob-
tain performance gains in highly repetitive
situations. Thus, small benchmarks might
be hiding the actual performance cost in
a normal situation behind the performance
benefits of the cache.

2.4 The Need to Move Away From Tradi-
tional Benchmarks
The types of changes that we need bench-

marks to test are system-wide software changes

that do not require new hardware at all. For
example, if we install a new version of libc,
we need to see how it performs compared
to older versions. In the case of LMbench,
the syscall benchmark will only tell us how
one of the hundreds of syscalls is perform-
ing. Or, when testing a new compiler, tra-
ditional benchmarks cannot really tell us if
the new compiled code is any faster. These
benchmarks do not really measure the per-
formance of real world applications, which is

why we need a system benchmarking mech-
anism.

3. MODERN SYSTEM BENCHMARKING

System benchmarking is necessary but largely
neglected and non-standardized. In late July,
2007, the community of Linux kernel de-
velopers debated the merits of two differ-
ent CPU schedulers.[2] The community had
to rely largely on user testimonials because
the existing tools were insufficient. In gen-
eral, current problems of CPU scheduling
are related to the “interactivity” of the com-
puter system, or rather, the ability for the
CPU scheduler to discern which programs
are most important to the user. Existing
benchmarking tools are not equipped to mea-
sure interactivity. The developer of one sched-
uler tried to quantify his suspected improve-
ments by writing his own benchmarking soft-
ware, but also admitted they were far from
ideal.[5]

4. FINDING A BETTER BENCHMARK
System benchmarks should be based on ac-
tual system usage, so it makes sense to run
similar programs to those that the deployed
system would run. However, a benchmark,
by definition, should be reproducible and
give specific information on its performance.
Interactive programs are useful for this type
of benchmarking but it is hard to repro-
duce results in such an environment. Some,
however, include their own benchmarking
tool that requires no user interaction. These
tools may serve as starting points or build-
ing blocks for a suite of system benchmarks.
However, because they are limited in scope
to the behavior of only one program, they
cannot measure the performance of an en-
tire multi-user system.

The tool we developed, Audlib, is a inter-
posable library which may potentially affect
the performance of every userspace program
in the system. Therefore, it is very impor-
tant to be aware of possible system perfor-

mance degradation. Any one program may
not show decreased performance, even if an-
other does, so it is important that we per-
form a large variety of benchmarks.

We have selected tools that meet the follow-
ing requirements:

1. Open source: We are developing an
open source tool and if our results need
to be duplicated we should use software
that is freely available. Open source is
free, which removes a prohibitive factor
from the deployment of the benchmark.

2. Complex: The benchmark should not
be based on raw throughput but rather
accomplishing a complex task similar to
real-world usage.

3. Quantifiable: We want benchmarks,
and the ability set up a controlled envi-
ronment is essential.

4.1 Candidates

4.1.1 Apache Webserver

Apache web server is the most popular web
server in use today. In July of 2007 Apache
served 52% [6] of all websites. It is an open
source application and has a built-in bench-
mark. This tool, ab, or Apache Benchmark,
stress tests the HT'TP server by making mul-
tiple requests on it and collecting data. It
allows the user to specify the number of re-
quests made, as well as number of concur-
rent requests to be made. This makes it
a good test of concurrent processes, as the
httpd program spawns several processes to
handles requests. The tool ab can be in-
voked with any server as an argument. This
allows it to be run from a remote machine,
adding more control to the benchmark.

4.1.2 Linux Kernel Compilation
The Linux kernel* is a large, complex, widely
available and widely used open source project.’

“http://kernel.org
Shttp://en.wikipedia.org/wiki/Linux

65

Building the kernel requires a large number
of potentially parallel compilations, which
also makes it an interesting benchmark for
multi-processor systems. It exercises vari-
ous subsystems, including memory manage-
ment, [/O control, and process scheduling,
among others. The actual kernel built, and
therefore the time it takes to build, changes
depending on the configuration used. We
used the default configuration, which can be
generated with make menuconfig followed
by immediately exiting. Options may be
added or removed if an easier or harder test
is desired. To actually gather information
on the time it takes to compile, run (make
clean; time make).

4.1.3 Vim Build Test

Vim® is a modern update to a standard UNIX
text editor vi, used by many programmers
and UNIX command line users.[7] After build-
ing the program, Vim includes a test suite
which exercises the various components of
the editor. Since text editing is a common
task on a multi-user computer system, the
Vim self-test should serve as a good bench-
mark. The command to run the test is (make
clean; make; time make test).

4.1.4 Quake II1

Quake III is a 3-D computer game released
in 1999 by id Software”. The source code
was released in 2005 under the GPL open
source license. The game includes bench-
mark functionality in which a demo is run
as quickly as possible and the average num-
ber of graphical frames rendered per second
is calculated. This can be run by starting up
the game and then entering the commands
timedemo 1 and demo four into the con-
sole. While much of the performance for
3-D games relies on the graphics hardware,
we wanted to make sure that we had no neg-
ative performance impact in such an inter-

Shttp://www.vim.org

"http://www.idsoftware.com/games/quake/
quake3-arena/

66

active environment.

4.2 Evaluation

4.2.1 Apache Webserver

The ab tool was run multiple times to elimi-
nate the effects of caching and possible net-
work interference. Each run with 100,000
requests produced about 50 MB of data from
our library. This indicated that the bench-
mark was exercising the system at a good
rate. The ability to specify the number of
requests is an advantage. The tester can
easily adjust the length of the test this way,
or increase the load by making more concur-
rent requests. The flexibility of the bench-
mark combined with the reporting tools that
it offers, make it a key benchmark for any-
one wanting to gauge system performance.
The only drawback would be the fact that
setup is slightly difficult. For those inexpe-
rienced in setting up a webserver, there may
be a few hurdles, but nothing unsurmount-
able, as the process is well documented.

4.2.2 Linux Kernel Compilation

The full build took roughly twenty minutes
without our program, and almost twenty six
with it. This demonstrates the significant
impact our tool may have on system perfor-
mance, depending on the configuration. In
this situation, kernel compilation acts as a
good benchmark for us because its perfor-
mance is sensitive to the software configu-
ration of the system.

4.2.3 Vim Build Test

The Vim build test automatically performs
many editing commands on many tempo-
rary files. This should mimic the text edit-
ing actions of a normal user, but of course, it
runs much faster than a normal user would
type. On a sample run (in which we chose
to include the compilation step), we logged
over 1.4 million calls to the printf library
function and over 150 thousand calls to open.
This shows a significant amount of terminal

and disk 1/0.

4.2.4 Quake Il11

The Quake III test showed little slowdown,
and in some cases a speedup under our new
libraries. A drawback to using this bench-
mark is that it cannot be easily automated.
The commands need to be run from inside
the game’s terminal, requiring user input on
each run of the benchmark. Aside from this
however, the test can be reproduced accu-
rately, which makes this a good benchmark.

5. BUILDING A BETTER BENCHMARK
In the computing world, benchmarks have a
much higher profile role than helping soft-
ware developers with their work. The hard-
ware industry has long had access to a vari-

ety of reproducible, sufficiently complex bench-

marks. No graphics card or CPU escapes
benchmark evaluation, and purchases are of-
ten made after only considering those re-
sults. Could a system benchmark hold such
a high level of esteem?

The key to a system benchmark’s success
may be its robustness in measuring different
aspects of the system software.

The ideal tool would obtain specific perfor-
mance information on all components of a
system, including:

1. Memory A modern system gains many

performance improvements from the proper

use of available memory. A benchmark
should measure how quickly critical in-
formation can be retrieved.

2. Filesystem Files are organized by the
filesystem. The theory and implemen-
tation of the file system can drastically
impact the read and write time of every
file. A benchmark should minimize the
role of the actual media that the filesys-
tem manages.

3. Process Control Modern systems can
handle many different programs running
in parallel. A benchmark should put

the system under extreme load and mea-
sure the degradation of performance. This
would provide especially useful informa-
tion on multiprocessor systems, where
scheduling algorithms are more impor-
tant and more complex.

4. Display Because almost every modern
system relies on a graphical user inter-
face, a benchmark should test a sys-
tem’s ability to render standard wid-
gets.

5. User Input “Interactivity” is essentially
the system’s ability to respond quickly
and efficiently to user input. A bench-
mark should simulate variety of inputs
(mouse, keyboard, etc.) and evaluate
the response.

6. CONCLUSIONS

Would the software industry welcome a stan-
dard system benchmarking suite? Bench-
marks are widely used in the hardware in-
dustry because they specifically showcase the
fruit of their efforts. New hardware is de-
signed, built, and sold with performance in
mind. In general, software does not have
the same obsession with speed. The hard-
ware industry has actually boomed largely
to compensate for slower systems. Com-
puters generally require the same amount
of time to boot up and they show the same
historic responsiveness, or lack thereof. Few
new operating systems are released claim-
ing increased performance. That is not to
say that software developers neglect perfor-
mance completely. Rather, performance work
is a means, not an end. It is necessary to
balance the increased complexity of new fea-
tures, but not desired in and of itself.

7. FUTURE WORK

Much of the hard work here is done. We
have researched and evaluated several can-
didates and have a clear picture of what to
include in our own “suite” of benchmarks.
The next step would be to begin implement-

67

ing the system benchmark suite. Next sum-
mer, we could take the system benchmarks
we have worked with (complex compilation,
text editing, 3D game, etc...) and either
strip them of some of their complexity, or
create a test from scratch that is inspired
by one of the benchmarks we used. For in-
stance, we could compile a smaller section of
the Linux Kernel, and we could make a stan-
dalone 3D program that requires no user in-
put. The idea would be to automate the
tests, make them run within a reasonable
amount of time (probably less than a minute
for each), and also remove most dependen-
cies. The benchmarking suite should be a
stand alone program. Next, we should go
through our list of system components and
build tests that stress areas that the existing
programs don’t cover. Finally, benchmark
output should be tweaked to give meaning-
ful output, so that comparisons can be easily
made between different systems.

8. REFERENCES

[1] A. Brown and M. Seltzer. Operating
system benchmarking in the wake of
Imbench: A case study of the
performance of netbsd on the intel x86
architecture. In 1997 ACM
SIGMETRICS Conference on
Measurement and Modeling of
Computer Systems Annual Technical
Conference, June 1997. http:
//www.eecs.harvard.edu/vino/perf/
hbench/sigmetrics/hbench.pdf.

[2] Linux: CFS and 3D Gaming, July 2007.
http://kerneltrap.org/node/14023.

[3] Linux: Tuning CFS, August 2007.
http://kerneltrap.org/node/14055.

[4] L. W. McVoy and C. Staelin. Imbench:
Portable tools for performance analysis.
In USENIX 1996 Annual Technical
Conference, pages 279-294, Jan. 1996.
http://www.bitmover.com/lmbench/
lmbench-usenix.ps.gz.

[5] A. Mills. Why I quit: kernel developer

68

Con Kolivas, July 2007.
http://apcmag.com/6735/interview_
con_kolivas.

[6] Netcraft web server survey, July 2007.
http://survey.netcraft.com/
Reports/200707/byserver/.

[7] Vim (text editor), August 2007.
http://en.wikipedia.org/wiki/Vim_
%h28text_editor29.

